¹ Supporting Information

Considerable unaccounted local sources of NOx emissions in China revealed from satellite

- 4 Hao Kong¹, Jintai Lin^{1,*}, Lulu Chen¹, Yuhang Zhang¹, Yingying Yan², Mengyao Liu³,
- 5 Ruijing Ni¹, Zehui Liu¹, Hongjian Weng¹
- 6 ¹Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric
- 7 and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
- 8 ²Department of Atmospheric Science, School of Environmental Sciences, China
- 9 University of Geosciences (Wuhan), Wuhan, 430074, China
- 10 ³R&D Satellite Observations Department, Royal Netherlands Meteorological
- 11 Institute, De Bilt, the Netherlands

12 The Supporting Information includes 25 pages, 14 figures, and 3 tables.

Table of Contents

14	Figures (S1-S14)Pg S3
15	Illustration of interpolated profiles of NO ₂ and AOD.
16	POMINO-TROPOMI NO ₂ VCDs with adjustment and de-backgrounding.
17	NO ₂ /NOx ratio estimates based on our regression model.
18	How sub-domains are divided.
19	Uncertainties of NOx emissions, derived NOx lifetime, and its uncertainties.
20	Evaluation of emission inversion approach based on GEOS-Chem simulations.
21	Evaluation of impact of satellite averaging kernels.
22	Natural NOx emissions.
23	Proxy data of human activity.
24	Our NOx emissions regridded to lower resolutions.
25	Scatter plots for provincial emissions after removing minor roads from PHLET.
26	Scatter plots for provincial emissions after removing minor roads from regridded PHLET.
27	GEOS-Chem simulations and comparisons with surface measurements.
28	Provincial NOx emissions.
29	
30	Tables (S1-S3)Pg S17
31	Fitted coefficients for the regression model for NO ₂ /NOx ratio.
32	Uncertainty settings.
33	Correlation between proxies and emissions.
34	
35	1. GEOS-Chem v12.9.3 simulationPg S21
36	2. Proxy data of human activityPg S22
37	ReferencesPg S24

38 Figures

Figure S1. Vertical profiles of NO₂ (a) and sub-column AOD (b) in the troposphere. The solid black lines stand for the profiles taken from nested GEOS-Chem V9-02 simulations (as in the released version of POMINO-TROPOMI) at two adjacent grid cells centered at (121.25°E, 31°N) and (121.5625°E, 31°N), respectively. The horizontal resolution of GEOS-Chem is 0.3125° longitude × 0.25° latitude. The dotted lines in colors stand for interpolated profiles at $0.05^{\circ} \times 0.05^{\circ}$ for locations in between the two adjacent GEOS-Chem grid cells.

Figure S2. Regression between POMINO-TROPOMI and POMINO-OMI NO₂ VCDs
sampled at 0.25° × 0.25° (a). TROPOMI NO₂ VCDs on a 0.05° × 0.05° grid re-retrieved
based on interpolated a priori NO₂ vertical profiles and the POMINO algorithm (b).
Similar to (b) but further adjusted based on the POMINO-OMI NO₂ (c). Similar to (c)
but further de-backgrounded (d).

Figure S3. Scatter plot between the NO₂/NOx ratio calculated by GEOS-Chem and the
ratio predicted by regression with coefficients in Table S1 (a). Spatial distribution of
predicted NO₂/NOx ratio (b).

Figure S4. Illustration of how the study domain (70°-140°E, 15°-55°N) is divided into sub-domains. Each $0.05^{\circ} \times 0.05^{\circ}$ grid cell is covered by 4 sub-domains inside, 2 subdomains near the edges (denoted in green) of, or 1 sub-domain at the corners (denoted in blue) of the study domain. On the right is the four sub-domains around Beijing as an example – Sub-domains A, B, C and D are centered at (115°E, 42.5°N), (117.5°E, 42.5°N), (115°E, 40°N) and (117.5°E, 40°N), respectively.

Figure S5. Uncertainty of NOx emissions $(1-\sigma)$ (a), relative uncertainty of NOx emissions $(1-\sigma)$ (b), NOx lifetime estimated here (c), and uncertainty of NOx lifetime (d). The grey areas in (b) stand for where NOx emissions are below 1 kg km⁻² h⁻¹.

Figure S6. NO₂ VCDs simulated by GEOS-Chem (a), NOx emissions retrieved based on NO₂ VCDs simulated by GEOS-Chem (b), NOx emissions used in GEOS-Chem simulations (c), and scatter plot for (a) and (b) with colors representing data density (d).

Figure S7. Similar to Fig. S6, but the GEOS-Chem NO₂ profiles are applied with the

⁷⁴ AKs from POMINO-TROPOMI.

Figure S8. NOx emissions from biomass burning (a), NOx emissions from soil (b).
Note the nonlinear color scales in (a).

Figure S9. Proxy data at a horizontal resolution of $0.05^{\circ} \times 0.05^{\circ}$.

Figure S10. Horizontal distribution of NOx emissions over China from our PHLETbased emission estimate for summer 2019 at $0.05^{\circ} \times 0.05^{\circ}$ (a), $0.1^{\circ} \times 0.1^{\circ}$ (b), $0.25^{\circ} \times$

83 0.25° (c), $0.5^{\circ} \times 0.5^{\circ}$ (d).

Figure S11. Similar to Fig. 3, but after removing NOx emissions at grid cells with minor roads but no major roads from the inferred emissions. The bottom-up inventories are not changed.

Figure S12. Similar to Fig. S11, but regridding our emissions to $0.25^{\circ} \times 0.25^{\circ}$ before removing emissions at grid cells with minor roads but no major roads from the inferred emissions. The bottom-up inventories are not changed.

Figure S13. GEOS-Chem (v12.9.3, 0.25° × 0.3125°) simulations in July 2019, based
on our emissions (top) and the MEIC inventory (bottom). The colored circles stand for
MEE surface measurements.

97 **Figure S14.** NOx emissions (unit: kTon NO₂ h^{-1}) in 31 provinces of mainland China.

- 98 Blue: our emissions (JJA 2019) with error bars (1-σ); orange: MEIC (JJA 2017); green:
- 99 CEDS (JJA 2019); red: EDGAR (JJA 2015); purple: PKU-NOx (JJA 2014).

100 Tables

Table S1. Values of coefficients of regression for the NO₂/NOx ratio (Eq. 1) derived
based on least square fitting. Results with the P-value < 0.01 are marked as **.

	Best estimate	Standard deviation	Statistical significance
a (land/sea)	0.65/0.59	0.01/0.01	* * / * *
b (land/sea)	0.59/0.54	0.003/0.003	* * / * *
c	0.006	0.001	* *
d	0.0025	0.000	* *
e	0.038	0.001	* *
f (land/sea)	-19.4/-17.8	0.1/0.1	* * / * *

- 103 **Table S2.** Uncertainty settings $(1-\sigma)$ in derivation of NOx emissions in this study and
- 104 our previous work¹.

Error source	Kong et al. (2019)	This study	Notes			
Errors affecting the derivation of LNS; all error sources are added in quadrature to						
construct the diagonal of error covariance matrix in the cost function of PHLET Adjoint.						
Satellite NO ₂ VCD	$30\% + 1.9 \times 10^{15}$	$20\% + 0.5 \times 10^{15}$ molec.	Satellite data			
data	molec. cm ⁻² for each	cm ⁻² for each pixel, and	quality is			
	pixel, and further	further reduced by a	improved.			
	reduced by a factor of	factor of $s =$	c = 0.5 and n is			
	$s = \sqrt{\frac{1-c}{1-c} + c}$ by	$\frac{1-c}{1-c} + c$ by sampling	the number of			
	\sqrt{n}	\sqrt{n}	pixels with valid			
	sampling over pixels	over pixels in multiple	data during			
	in multiple days	days	summer 2019.			
Removal of NO2	5% of NO2 VCDs	0.3×10^{15} molec cm ⁻²	Smoother			
background			background			
			ouenground			
Horizontal	50% of standard	Removed	TROPOMI has a			
resolution of	deviation of		much higher			
satellite NO ₂ VCDs	surrounding grid cells		horizontal			
being lower than			resolution than			
that of derived			OMI			
emissions						
Assumption of	15% of NO ₂ VCDs	15% of NO ₂ VCDs				
stable NO ₂						
(emission equals						
loss) at the satellite						
overpass time						
Long-term average	10% of NO ₂ VCDs	10% of NO ₂ VCDs				
for emission						
inversion						
2 dimensional	15% of NO- VCDa	15% of NO. VCDa				
simplification of	1570 01 NO ₂ VCDS	1570 01 NO ₂ VCDS				
chemistry transport						
in PHI FT						
Derivation of	20% of NO ₂ VCDs	20% of NO ₂ VCDs				
effective diffusion						
coefficients from						
wind field						

NO ₂ /NOx ratio	15% of NO ₂ VCDs	5% of NO ₂ VCDs	The value is fixed in Kong et al., but is derived here for each grid cell by regression.		
Errors affecting the calculation of emissions and lifetime parameters but not LNS					
Derivation of NOx lifetime parameters	Standard deviation within multiple estimates by changing the LNS quantiles.	Root mean square difference between the emissions derived with 1%-quantile of LNS (best estimate) and those with 0.1% (upper estimate) and 2% quantiles (lower estimate).			

Table S3. Correlation coefficients between spatial proxies and NOx emissions 105 (including our emissions denoted as PHLET, our emissions regridded on $0.25^{\circ} \times 0.25^{\circ}$ 106 grid and $0.1^{\circ} \times 0.1^{\circ}$ grid, MEIC, PKU-NOx and EDGAR). In each row, the upper values 107 are calculated for mainland China, and the lower values for three western provinces 108 (Xinjiang, Xizang and Nei Monggol) together. Results with the P-value < 0.01 are 109 marked as **. As emission data can be at different resolutions, they are always mapped 110 to $0.05^{\circ} \times 0.05^{\circ}$ before correlation coefficients are calculated. The resolution of CEDS 111 112 is too low (0.5°) to allow a meaningful correlation analysis.

	PHLET	PHLET	PHLET	MEIC	PKU-NOx	EDGAR
	(0.05°)	(0.1°)	(0.25°)	(0.25°)	(0.1°)	(0.1°)
Density of	0.51**	0.53**	0.55**	0.52**	0.28**	0.17**
major road lines	0.43**	0.45**	0.41**	0.40**	0.42**	0.28**
Density of	0.48**	0.51**	0.57**	0.48**	0.25**	0.14**
minor road lines	0.46**	0.48**	0.45**	0.35**	0.37**	0.23**
Population density	0.49**	0.51**	0.56**	0.53**	0.32**	0.18**
1 5	0.41**	0.44**	0.45**	0.47**	0.49**	0.27**
Tencent location data	0.54**	0.55**	0.55**	0.52**	0.32**	0.18**
	0.50**	0.50**	0.44**	0.41**	0.45**	0.28**
Nighttime light	0.53**	0.54**	0.55**	0.57**	0.36**	0.21**
8	0.47**	0.50**	0.47**	0.44**	0.47**	0.29**

113 **1. GEOS-Chem simulations**

We use the nested GEO-Chem v12.9.3 to simulate NO₂ VCDs over East China (70°-114 140°E, 15°-55°N) at 0.3125° longitude \times 0.25° latitude with 47 vertical layers, for 115 purposes of establishing the regression model for the NO₂/NOx ratio and evaluating our 116 emission inversion approach. The nested model is driven by the GEOS-FP assimilated 117 meteorology in 2019 from the NASA Global Modeling and Assimilation Office and 118 emissions in 2017 (the latest year) from MEIC. The model is run in summer (June, July 119 and August) 2019 with the full Ox-NOx-VOC-CO-HOx gaseous chemistry and online 120 aerosols. Model convection follows the relaxed Arakawa-Schubert scheme². Vertical 121 mixing in the planetary boundary layer employs a non-local scheme implemented by 122 Lin et al.³ Dry deposition follows Wesely⁴, with a number of modifications, for gases⁵ 123 and Zhang et al. for aerosols⁶. Model results in a smaller domain (80°-130°N, 20°-50°E) 124 are used here to exclude artificial noise near the lateral boundaries. 125

126 **2. Proxy data of human activity**

We use five gridded proxy datasets of human activity to help evaluate the derived emissions, including population density, Tencent location data, nighttime light, road line density and GPD.

We take population density data on a $2.5' \times 2.5'$ grid from the Gridded Population 130 of World v4(GPWv4; 131 the database https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/browse; last access: 19 132 August 2018)⁷. GPW is a widely-used proxy in bottom-up inventories to allocate 133 spatially aggregated emissions to individual locations^{8,9}. In China, the database is based 134 on township-level data from a census in 2010 and extrapolated to other years (2000, 135 136 2005, 2010, 2015 and 2020). Here we use the data in 2015 (Fig. S8a) since the predicted data for 2020 do not account for the effect of COVID-19. Given the relatively old base 137 year (2010) and the large size of towns in western China, the database may contain 138 significant errors in inferring anthropogenic activity in 2019 especially in the west. 139

140 For an up-to-date proxy, we choose Tencent user location data (https://xingyun.map.qq.com/). Tencent is a private Internet company in China 141 providing instant messaging (text, audio and video) services with the dominant market 142 share^{10,11}. The company publishes a real-time map of the number distribution of its more 143 than 1.2 billion users at a horizontal resolution of $0.05^{\circ} \times 0.05^{\circ}$ and a temporal 144 resolution of every 0.5 second, based on its users' location requests via WeChat and 145 other APPs. We grip the location data from 30 August 2021 to 31 September 2021 and 146 calculate the temporal average (Fig. S8e), since earlier data cannot be retrieved. The 147 Tencent location data not only show intensive human activity in major city clusters, as 148 in the GPWv4 population data, but also reveal up-to-date and subtle details of human 149 activity especially in the western provinces, e.g., around the road lines and over the 150 Tibetan Plateau. 151

152

We adopt nighttime light data in 2018 from version 4 of the Defense

153 Meteorological Satellite Program – Operational Linescan System (DMSP-OLS, last 154 access: 31 January 2021)^{12,13} in our emission filtering and analysis. Nighttime light is 155 another widely used proxy in bottom-up inventories to spatially allocate aggregated 156 emissions⁸. Here the data are regridded from its original resolution of $0.5' \times 0.5'$ to 0.05° 157 $\times 0.05^{\circ}$ (Fig. S8b).

We take road net data for 2020 from AMAP (https://www.amap.com/; last access: 26 August 2021)^{14,15}, and calculate the road line densities of major and minor roads (Fig. S8c, d). The major roads are referred to here as expressways, national highways, provincial highways and first-grade roads which allow speed limits larger than 60 km h⁻¹. The minor roads include county highways, township highways and second-grade roads. For each class of roads, we calculate the number of road lines in each grid cell and refer it as road line density¹⁴.

We also adopt gridded GDP data in 2015 at a resolution of 1 km from the Resource and Environmental Science and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/; last access: 13 August 2021)^{16,17}. We calculate county-level GDP from the gridded data.

169 **References**

Kong, H.; Lin, J.; Zhang, R.; Liu, M.; Weng, H.; Ni, R.; Chen, L.; Jingxu, W.; Yan, Y.;
 Zhang, Q., High-resolution (0.05° × 0.05°) NO x emissions in the Yangtze River Delta inferred from
 OMI. *Atmospheric Chemistry and Physics* **2019**, *19*, 12835-12856.

Rienecker, M. M.; Suarez, M. J.; Todling, R.; Bacmeister, J.; Takacs, L.; Liu, H., -C.; Gu,
 W.; Sienkiewicz, M.; Koster, R. D.; Gelaro, R.; Stajner, I.; Nielsen, J. E., *The GEOS-5 Data Assimilation System: Documentation of Versions 5.0.1, 5.1.0, and 5.2.0.* National Aeronautics and
 Space Administration, Goddard Space Flight Center: 2008.

177 3. Lin, J.-T.; McElroy, M. B., Impacts of boundary layer mixing on pollutant vertical profiles in the
178 lower troposphere: Implications to satellite remote sensing. *Atmospheric Environment* 2010, *44*179 (14), 1726-1739.

Wesely, M. L., Parameterization of surface resistances to gaseous dry deposition in regional scale numerical models. *Atmospheric Environment (1967)* 1989, *23* (6), 1293-1304.

Wang, Y.; Jacob, D. J.; Logan, J. A., Global simulation of tropospheric O3-NOx-hydrocarbon
 chemistry: 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons. *Journal of Geophysical Research: Atmospheres* 1998, *103* (D9), 10757-10767.

185 6. Zhang, L.; Gong, S.; Padro, J.; Barrie, L., A size-segregated particle dry deposition scheme
186 for an atmospheric aerosol model. *Atmospheric Environment* 2001, *35*, 549-560.

Center for International Earth Science Information Network - CIESIN - Columbia University,
 Gridded Population of the World, Version 4 (GPWv4): Population Count. NASA Socioeconomic
 Data and Applications Center (SEDAC): Palisades, NY, 2016.

Geng, G.; Zhang, Q.; Martin, R. V.; Lin, J.; Huo, H.; Zheng, B.; Wang, S.; He, K., Impact
 of spatial proxies on the representation of bottom-up emission inventories: A satellite-based
 analysis. *Atmospheric Chemistry and Physics* 2017, *17*(6), 4131-4145.

Kurokawa, J.; Ohara, T.; Morikawa, T.; Hanayama, S.; Janssens-Maenhout, G.; Fukui,
 T.; Kawashima, K.; Akimoto, H., Emissions of air pollutants and greenhouse gases over Asian
 regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. *Atmos. Chem. Phys.* 2013, *13* (21), 11019-11058.

197 10. Chen, B.; Song, Y.; Kwan, M.-P.; Huang, B.; Xu, B., How do people in different places
198 experience different levels of air pollution? Using worldwide Chinese as a lens. *Environmental*199 *Pollution* 2018, *238*, 874-883.

200 11. Tencent Tencent location big data. <u>https://xingyun.map.qq.com/</u>.

12. Elvidge, C. D.; Baugh, K. E.; Dietz, J. B.; Bland, T.; Sutton, P. C.; Kroehl, H. W., Radiance
calibration of DMSP-OLS low-light imaging data of human settlements. *Remote Sensing of Environment* 1999, *68(1)*, 77-88.

13. Hsu, F. C.; Baugh, K. E.; Ghosh, T.; Zhizhin, M.; Elvidge, C. D., DMSP-OLS radiance
calibrated nighttime lights time series with intercalibration. *Remote Sensing* 2015, *7(2)*, 1855-1876.

14. Feng, X.; Xiu, C.; Bai, L.; Wen, Y., Urban Centrality and Influencing Factors in Jilin Province
from the Perspective of Highway Traffic Flow. *Economic Geography* **2019**, *39* (1), 64-72.

208 15. Oda, T.; Maksyutov, S., A very high-resolution (1 km×1 km) global fossil fuel CO₂ emission
209 inventory derived using a point source database and satellite observations of nighttime lights.
210 *Atmos. Chem. Phys.* 2011, *11* (2), 543-556.

- 211 16. Ling, Y. I.; Xiong, L. Y.; Yang, X. H., Method of Pixelizing GDP Data Based on the GIS. *Journal*
- 212 *of Gansu Sciences* **2006,** *18* (2), 54-58.
- 213 17. Liu, H.; Jiang, D.; Yang, X.; Luo, C., Spatialization Approach to 1km Grid GDP Supported by
- 214 Remote Sensing. *Geo-information Science* **2005**, *7*(2), 120-123.